首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260171篇
  免费   5287篇
  国内免费   3273篇
测绘学   6977篇
大气科学   19553篇
地球物理   54002篇
地质学   90954篇
海洋学   22193篇
天文学   55869篇
综合类   1040篇
自然地理   18143篇
  2021年   2187篇
  2020年   2592篇
  2019年   2844篇
  2018年   4423篇
  2017年   4154篇
  2016年   6191篇
  2015年   4229篇
  2014年   6915篇
  2013年   14204篇
  2012年   6856篇
  2011年   8643篇
  2010年   7735篇
  2009年   10257篇
  2008年   8945篇
  2007年   8641篇
  2006年   9714篇
  2005年   7920篇
  2004年   7776篇
  2003年   7265篇
  2002年   6731篇
  2001年   5918篇
  2000年   5591篇
  1999年   4827篇
  1998年   4856篇
  1997年   4636篇
  1996年   4213篇
  1995年   4317篇
  1994年   3996篇
  1993年   3753篇
  1992年   3499篇
  1991年   3523篇
  1990年   3628篇
  1989年   3335篇
  1988年   3165篇
  1987年   3718篇
  1986年   3251篇
  1985年   4118篇
  1984年   4631篇
  1983年   4302篇
  1982年   4222篇
  1981年   3847篇
  1980年   3591篇
  1979年   3432篇
  1978年   3436篇
  1977年   3219篇
  1976年   2965篇
  1975年   2903篇
  1974年   2864篇
  1973年   3063篇
  1972年   1991篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The Amur and Kiselevka–Manoma accretionary complexes belong to the Cretaceous Khingan–Okhotsk active continental margin, which was formed in the east of Eurasia as a result of the subduction of the Pacific oceanic plates. The Kiselevka–Manoma complex is composed of oceanic pelagic and hemipelagic sedimentary rocks and intraplate oceanic basalts. It is located to the southeast, along the ocean-faced front of the Amur complex, which is predominantly composed of turbidites of the convergent boundary of lithospheric plates. The biostratigraphic study of radiolarians from rocks of the frontal part of the Amur complex allowed us to correlate them with rocks of the Kiselevka–Manoma complex and to define the period of accretion to be from the Late Aptian to the Middle Albian. The tectonostratigraphic interrelations of these two contrasting lithotectonic complexes are established and two possible models of their common emplacement are suggested. Both models suppose a continuous spatiotemporal relation of complexes with the primary paleolocation of the Kiselevka–Manoma complex in front of (on the ocean side) the Amur complex. The frontal part of the Amur complex and the Kiselevka–Manoma complex were emplaced synchronously with the western part of the East Sakhalin accretionary complex. This scenario defines the Early Cretaceous tectonic zonation of the region and the choice of the appropriate paleotectonic model. At the end of the Early Cretaceous, a single convergent boundary of the lithospheric plates is suggested with the position of the Sakhalin island arc system south of the Khingan–Okhotsk active continental margin.  相似文献   
992.
The paper is focused on the two tectonic-geodynamic factors that made the most appreciable contribution to the transformation of the lithospheric and hydrocarbon potential distribution at the Barents Sea continental margin: Jurassic-Cretaceous basaltic magmatism and the Cenozoic tectonic deformations. The manifestations of Jurassic-Cretaceous basaltic magmatism in the sedimentary cover of the Barents Sea continental margin have been recorded using geological and geophysical techniques. Anomalous seismic units related to basaltic sills hosted in terrigenous sequences are traced in plan view as a tongue from Franz Josef Land Archipelago far to the south along the East Barents Trough System close to its depocentral zone with the transformed thinned Earth’s crust. The Barents Sea igneous province has been contoured. The results of seismic stratigraphy analysis and timing of basaltic rock occurrences indicate with a high probability that the local structures of the hydrocarbon (HC) fields and the Stockman-Lunin Saddle proper were formed and grew almost synchronously with intrusive magmatic activity. The second, no less significant multitectonic stress factor is largely related to the Cenozoic stage of evolution, when the development of oceanic basins was inseparably linked with the Barents Sea margin. The petrophysical properties of rocks from the insular and continental peripheries of the Barents Sea shelf are substantially distinct as evidence for intensification of tectonic processes in the northwestern margin segment. These distinctions are directly reflected in HC potential distribution.  相似文献   
993.
Mélanges occur as discontinuous, mappable, units along an extensive N–S-trending, steeply dipping zone of distributed shear in metamorphic complexes along the coast of central Chile. Large mélange zones, from north to south, near Chañaral, Los Vilos, Pichilemu, and Chiloé Island, contain variations in lithologic and structural detail, but are consistent in exhibiting cross-cutting fabric features indicating a progressive transition from earlier ductile to more brittle deformation. In the Infiernillo mélange near Pichilemu, Permian to Early Triassic, sub-horizontal schistosity planes of the Western Series schist are disrupted, incorporated into, and uplifted along high-angle, N–S- to NNE–SSW-trending brittle–ductile shears. Mylonitic and cataclastic zones within the mélange matrix indicate active lateral shear during cumulative exhumation from depths exceeding 12 km in some areas. Exotic lithologies, such as Carboniferous mafic amphibolite and blueschist, formed during earlier Gondwanide subduction, match well with similar rocks in the Bahia Mansa to Los Pabilos region 750 km to the south, suggesting possible dextral offset. The development of the Middle to Late Triassic, N–S=trending, near-vertical shear zones formed weaknesses in the crust facilitating later fault localization, gravitational collapse, and subduction erosion along the continental margin. The length and linearity of this zone of lateral movement, coincident with a general hiatus of regional arc magmatism during the Middle to Late Triassic, is consistent with large-scale dextral transpression, or possible transform movement, during highly oblique NNE–SSW convergence along the pre-Andean (Gondwana) margin. The resultant margin parallel N–S-trending shear planes may be exploited by seismically active faults along the present coastal area of Chile. The palaeo-tectonic setting during the transitional period between earlier Gondwanide (Devonian to Permian) and later Andean (Late Jurassic to present) subduction may have had some similarity to the presently active San Andreas transform system of California.  相似文献   
994.
Analysis of 3.3 Ga tonalite–trondhjemite–granodiorite (TTG) series granitoids and greenstone belt assemblages from the Bundelkhand craton in central India reveal that it is a typical Archaean craton. At least two greenstone complexes can be recognized in the Bundelkhand craton, namely the (i) Central Bundelkhand (Babina, Mauranipur belts) and (ii) Southern Bundelkhand (Girar, Madaura belts). The Central Bundelkhand greenstone complex contains three tectonostratigraphic assemblages: (1) metamorphosed basic or metabasic, high-Mg rocks; (2) banded iron formations (BIFs); and (3) felsic volcanics. The first two assemblages are regarded as representing an earlier sequence, which is in tectonic contact with the felsic volcanics. However, the contact between the BIFs and mafic volcanics is also evidently tectonic. Metabasic high-Mg rocks are represented by amphibolites and tremolite-actinolite schists in the Babina greenstone belt and are comparable in composition to tholeiitic basalts-basaltic andesites and komatiites. They are very similar to the metabasic high-Mg rocks of the Mauranipur greenstone belt. Felsic volcanics occur as fine-grained schists with phenocrysts of quartz, albite, and microcline. Felsic volcanics are classified as calc-alkaline dacites, less commonly rhyolites. The chondrite-normalized rare earth element distribution pattern is poorly fractionated (LaN/LuN = 11–16) with a small negative Eu anomaly (Eu/Eu* = 0.68–0.85), being characteristic of volcanics formed in a subduction setting. On Rb – Y + Nb, Nb – Y, Rb – Ta + Yb and Ta – Yb discrimination diagrams, the compositions of the volcanics are also consistent with those of felsic rocks formed in subduction settings. SHRIMP-dating of zircon from the felsic volcanics of the Babina belt of the Central Bundelkhand greenstone complex, performed for the first time, has shown that they were erupted in Neoarchaean time (2542 ± 17 Ma). The early sequence of the Babina belt is correlatable with the rocks of the Mauranipur belt, whose age is tentatively estimated as Mesoarchaean. The Central Bundelkhand greenstone complex consists of two (Meso- and Neoarchaean) sequences, which were formed in subduction settings.  相似文献   
995.
There is a correlation of global large igneous province (LIP) events with zircon age peaks at 2700, 2500, 2100, 1900, 1750, 1100, and 600 and also probably at 3450, 3000, 2000, and 300 Ma. Power spectral analyses of LIP event distributions suggest important periodicities at 250, 150, 100, 50, and 25 million years with weaker periodicities at 70–80, 45, and 18–20 Ma. The 25 million year periodicity is important only in the last 300 million years. Some LIP events are associated with granite-forming (zircon-producing) events and others are not, and LIP events at 1900 and 600 Ma correlate with peaks in craton collision frequency. LIP age peaks are associated with supercontinent rifting or breakup, but not dispersal, at 2450–2400, 2200, 1380, 1280, 800–750, and ≤200 Ma, and with supercontinent assembly at 1750 and 600 Ma. LIP peaks at 2700 and 2500 Ma and the valley between these peaks span the time of Neoarchaean supercraton assemblies. These observations are consistent with plume generation in the deep mantle operating independently of the supercontinent cycle and being controlled by lower-mantle and core-mantle boundary thermochemical dynamics. Two processes whereby plumes can impact continental assembly and breakup are (1) plumes may rise beneath supercontinents and initiate supercontinent breakup, and (2) plume ascent may increase the frequency of craton collisions and the rate of crustal growth by accelerating subduction.  相似文献   
996.
997.
998.
999.
Neoarchaean–Palaeoproterozoic granitoids of the Aravalli craton, represented by four plutons with different ages, viz. Gingla (2.6–2.4 Ga), Ahar River (2562 Ma), Untala (2505 Ma), and Berach (2440 Ma) granitoids, are classified into three suites: TTG-like, Sanukitoid, and High-K Granitoid suite, all exhibiting negative Nb and Ti anomalies. The TTG-like suite is characterized by high contents of SiO2, Na2O, and LREEs, high (La/Yb)N, low contents of K2O, MgO, Cr, and Ni, and low (Dy/Yb)N, suggesting that this suite formed by partial melting of a subducted basaltic slab without interacting with a mantle wedge. In contrast, the calc-alkaline Sanukitoid suite is marked by a high content of LILEs and mantle-compatible elements, which indicate that this suite formed by partial melting of a slab-fluid metasomatized mantle wedge in a subduction-related arc environment. On the other hand, the High-K Granitoid suite is characterized by high contents of SiO2 and K2O, and low contents of Na2O, MgO, Cr, and Ni with variable Eu anomaly, along with high (La/Sm)N and (La/Yb)N, and low (Dy/Yb)N and Nb/Th. Some high-K granitoids also exhibit A-type characteristics. These features indicate that the High-K Granitoid suite formed by melting of crustal rocks. Early Neoarchaean continental crust formation reflected a slab-melting-dominated magmatic process as evidenced by the TTG-like suite, whereas Palaeoproterozoic petrogenesis was governed by the interaction of slab melt with mantle wedge as demonstrated by the Sanukitoid suite. The High-K Granitoid suite formed during the waning stages of subduction. This study reveals that granitic rocks of the Aravalli craton evolved from slab melting in the Neoarchaean to melting of mantle wedge in the Palaeoproterozoic. Melting of older crust led to the formation of the High-K Granitoid suite.  相似文献   
1000.
Geological history from the late Palaeoproterozoic to early Neoproterozoic is dominated by the formation of the supercontinent Columbia, and its break-up and re-amalgamation into the next supercontinent, Rodinia. On a global scale, major orogenic events have been tied to the formation of either of these supercontinents, and records of extension are commonly linked to break-up events. Presented here is a synopsis of the geological evolution of southwest Fennoscandia during the ca. 1.9–0.9 Ga period. This region records a protracted history of continental growth and reworking in a long-lived accretionary orogen. Three major periods of continental growth are defined by the Transscandinavian Igneous Belt (1.86–1.66 Ga), Gothian (1.66–1.52 Ga), and Telemarkian (1.52–1.48 Ga) domains. The 1.47–1.38 Ga Hallandian–Danopolonian period featured reorganization of the subduction zone and over-riding plates, with limited evidence for continental collision. During the subsequent 1.38–1.15 Ga interval, the region is interpreted as being located inboard of a convergent margin that is not preserved today and hosted magmatism and sedimentation related to inboard extensional events. The 1.15–0.9 Ga period is host to Sveconorwegian orogenesis that marks the end of this long-lived accretionary orogen and features significant crustal deformation, metamorphism, and magmatism. Collision of an indenter, typically Amazonia, is commonly inferred for the cause of widespread Sveconorwegian orogenesis, but this remains inconclusive. An alternative is that orogenesis merely represents subduction, terrane accretion, crustal thickening, and burial and exhumation of continental crust, along an accretionary margin. During the Mesoproterozoic, southwest Fennoscandia was part of a much larger accretionary orogen that grew on the edge of the Columbia supercontinent and included Laurentia and Amazonia amongst other cratons. The chain of convergent margins along the western Pacific is the best analogue for this setting of Proterozoic crustal growth and tectonism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号